Part Number Hot Search : 
ZTX1049A AN840 2SD1880 FE101 A5800182 EPA3574J 1M350 FM1808B
Product Description
Full Text Search
 

To Download IRLR7843TRLPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 04/30/08 irlr7843pbfirlu7843pbf hexfet   power mosfet notes   through  are on page 11 applications benefits  very low rds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current  high frequency synchronous buck converters for computer processor power  high frequency isolated dc-dc converters with synchronous rectification for telecom and industrial use  lead-free absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c maximum power dissipation  w p d @t c = 100c maximum power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds thermal resistance parameter typ. max. units r jc junction-to-case CCC 1.05 r ja junction-to-ambient (pcb mount)   CCC 50 c/w r ja junction-to-ambient CCC 110 140 max. 161  113  620 20 30 0.95 71 300 (1.6mm from case) -55 to + 175 v dss r ds(on) max qg 30v 3.3m 34nc d-pak irlr7843pbf i-pak irlu7843pbf  downloaded from: http:///

2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 19 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 2.6 3.3 m ? CCC 3.2 4.0 v gs(th) gate threshold voltage 1.4 CCC 2.3 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -5.4 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 37 CCC CCC s q g total gate charge CCC 34 50 q gs1 pre-vth gate-to-source charge CCC 9.1 CCC q gs2 post-vth gate-to-source charge CCC 2.5 CCC nc q gd gate-to-drain charge CCC 12 CCC q godr gate charge overdrive CCC 10 CCC see fig. 16 q sw switch char g e (q gs2 + q gd ) CCC 15 CCC q oss output charge CCC 21 CCC nc t d(on) turn-on delay time CCC 25 CCC t r rise time CCC 42 CCC t d(off) turn-off delay time CCC 34 CCC ns t f fall time CCC 19 CCC c iss input capacitance CCC 4380 CCC c oss output capacitance CCC 940 CCC pf c rss reverse transfer capacitance CCC 430 CCC avalanche characteristics parameter units e as si n gl e p u l se a va l anc h e e ner gy mj i ar a va l anc h e c urrent   a e ar r epet i t i ve a va l anc h e e ner gy  mj diode characteristics parameter min. t y p. max. units i s continuous source current CCC CCC 161  (body diode) a i sm pulsed source current CCC CCC 620 ( bod y diode )  v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 39 59 ns q rr reverse recovery charge CCC 36 54 nc t on forward turn-on time v ds = v gs , i d = 250a v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 125c conditions 14 max. 1440 12 ? = 1.0mhz i d = 12a v ds = 15v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 15a  v gs = 4.5v, i d = 12a  v gs = 20v v gs = -20v v ds = 15v, i d = 12a v ds = 15v, v gs = 0v v dd = 15v, v gs = 4.5v  clamped inductive load t j = 25c, i f = 12a, v dd = 15v di/dt = 100a/ s  t j = 25c, i s = 12a, v gs = 0v  showing the integral reverse p-n junction diode. intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) mosfet symbol CCC v gs = 4.5v typ. CCC CCC i d = 12a v gs = 0v v ds = 15v downloaded from: http:///

www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 2.0 3.0 4.0 5.0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 15v 20s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 25c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 175c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v downloaded from: http:///

4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 2 04 06 08 0 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 12a 0.0 0.5 1.0 1.5 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1.0 10.0 100.0 1000.0 v ds , drain-tosource voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///

www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 40 80 120 160 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.5084 0.0003920.5423 0.011108 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri downloaded from: http:///

6 www.irf.com d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 1000 2000 3000 4000 5000 6000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 8.6a 9.6a bottom 12a fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - downloaded from: http:///

www.irf.com 7 fig 15. 
 



   for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///

8 www.irf.com control fet  

   

      
 
   
 
 
         
   
   
 
  !"    
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   .  
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:///

www.irf.com 9  

  

   

  
  
 

        
! 
 

   
     !
 "  #
$ %&'  ()*++',-./.()'0%+(&(%) ()1(2*&'+
'*1"3'' 
 
     

!
  

 note: for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

10 www.irf.com  
   0       
 -  .  
     
        
      
   !        "      
 #$%&&'()*+*#$' ,-&#.#-$#$/#0%.'&'%/12''     
  
       
     
         
           
   note: for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

www.irf.com 11   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 20mh, r g = 25 ? , i as = 12a.  pulse width 400s; duty cycle 2%. 
 calculated continuous current based on maximum allowable junction temperature. package limitation current is 30a.  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994. data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/2008   

    0       
 -  . tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch note: for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRLR7843TRLPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X